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Abstract

In this paper, the problem of automatically mapping
large-grain dataflow programs onto heterogeneous hard-
ware/software architectures is treated. Starting with a given
hardware/software partition, interfaces are automatically in-
serted into the specification to account for communication,
in particular across hardware/software boundaries. Depend-
ing on the target architecture, the interfaces are refined
according to given communication constraints (bus proto-
cols, memory mapping, interrupts, DMA, etc.). An object-
oriented approach is presented that enables an easy migra-
tion (retargeting) of typical communication primitives to
other target architectures.

1 Introduction

This paper deals with the problem of automatic genera-
tion of hardware/software interfaces for certain classes of
dataflow graph based specifications.

The variety of differentabstract communication styles
(e.g., buffered versus non-buffered, blocking versus non-
blocking, synchronous versus asynchronous communica-
tion, etc.) encountered in differentdataflow process net-
work models [11], and typicalphysical communication
stylessuch as via memory-mapped I/O, dedicated ports,
etc., make it hard and inefficient to store all combinations
of communication types (e.g., a channel implementing a
blocking read, non-blocking write, buffered FIFO organi-
zation, reader in software, writer in hardware, etc.) in a
library, possibly for all combinations and for each different
target. Therefore, automatic interface generation tools are
necessary which, at the same time, should be easily change-
able (or reconfigurable) for other targets.

1.1 Motivation

Block-oriented schematic diagrams with dataflow se-
mantics are widely used for describing digital signal pro-
cessing applications (see, e.g., Fig. 1a). Examples of design
systems that enable the specification of such systems are
Ptolemy from UC Berkeley [3] and Cossap from Synopsys,
to name a few.

In dataflow specifications, nodes represent computa-
tions, and directed edges between nodes represent the trans-
fer of data between computations. A computation is deemed
ready for execution whenever it has sufficient data on each

of its input arcs. When a computation is executed, orfired,
the corresponding node in the dataflow graph consumes
some number of data values (tokens) from the input arcs
and produces some number of tokens on the output arcs.

Example 1 Figure 1a) shows the block diagram of a
molecular dynamics simulationapplication. The method
basically consists in iteratively computing forces on a set
of molecules using Newton’s equation of motion (block F)
and updating the position of molecules (block Int) based
on these computed forces. In order to reduce the (typically
huge) number of expensive force computations, the list of
pairs of particles for which nonimal forces exist, may be
reduced by first eliminating those pairs for which the dis-
tance is greater than a given cutoff radius (Pair) and eval-
uating forces only for the remaining pairs. In order to re-
duce the computational effort of pairlist computation, the
pairlist should only be updated every 5 iterations of the
force-position loop.
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Figure 1. Dataflow graph for molecular dy-
namics simulation and target architecture

Dataflow models may be classified each having a diffe-
rent descriptive power such as SDF [12], BDF (boolean
dataflow) [4], cyclo-static dataflow [7], and different dy-
namic dataflow models [9, 11]. In synchronous dataflow
(SDF) [12], the number of tokens consumed from each in-
put arc and produced on each output arc is a fixed positive
integer that is known at compile time (see Fig. 1b).

Example 2 In Fig. 1b), the schematic in Fig. 1a) has been
refined to an SDF-graph: A node is enabled for firing once a
fixed, statically known integer number of tokens (here 1 and
5) has accumulated on each input arc of an actor. Then,
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the actor may fire: the node consumes these input tokens,
performs its associated action (e.g., computing the set of
forces in case of actor F), and transfers the result tokens to
its outgoing arcs. Note that actor P (pairlist computation)
is executed only every fifth iteration (multirate system).

The design systems named above may also generate
code for simulation either in software (e.g., [2, 14]) or
for prototyping an application in hardware [18]. Here, we
seek to synthesizemixed hardware/software solutionsfrom
a specification of given particular dataflow network model.
Such a synthesis path may later be exploited by a design
space exploration tool (e.g., [16]). In this area, the auto-
matic generation of interfaces (address decoders, interrupt
circuitry, drivers, buses, etc.) has been addressed to a much
less extent.

Example 3 Figure 1c) shows a typical architecture for im-
plementing the molecular dynamics simulation engine con-
sisting of a microprocessor (CPU) and a hardware co-
processor (ASIC) as well as two memory blocks and two
buses. The microprocessor implements the tasks of (irregu-
lar) force computations and position updates, the coproces-
sor implements the (regular) pairlist computations.

The relevance of automatic compilation tools from
high-level specifications onto hardware/software architec-
tures has been recognized by many research groups, e.g.
[8, 10, 15]. Here, we restrict ourselves to implement-
ing dataflow models of computation, i.e., thesynchronous
dataflow(SDF) [12] model and focus on the generation of
interfaces for hardware/software implementations.

Approaches to automatic interface generation include
the CHINOOK [5] approach, as well as domain-specific
approaches like in the Polis environment [1] for control-
dominated systems described by a set of co-design finite
state machines (CFSMs), or the CoWare approach [13]
which targets at systems that may be described by commu-
nicating processes and system-on-a-chip implementations.
In [17], an object-oriented approach in which communica-
tion interfaces are stored in a library is described.

Our approach is highly related to the latter two ap-
proaches, however, differs from them by the following fea-
tures:

Contrary to [17], not the generated code is object-
oriented (code generation should provide code of highest
efficiency), but the tool that generates it. Here, interfaces
are assembled by code generation as opposed to be com-
pletely stored in libraries. To define a new target processor,
only small portions of the object-oriented code generation
classes have to be rewritten. Contrary to CoWare [13], not
only single-chip implementations are investigated. Also,
the communication model is highly parameterized in that
not only a particular scheme like Hoare’s rendezvous may
be implemented [13].

2 Methodology

We assume that a system is specified by a particular
kind of dataflow process network[11], e.g., synchronous
dataflow (SDF). The implementation process presented here
is hierarchical. First, a layer given byabstract modelsused
to describe dataflow graphs and target architectures is pre-
sented. The next section describes in detail the next lower
layer of refinement presenting ourimplementation models.

2.1 Abstract models

2.1.1 Node

Figure 2a) shows the abstract model of a data process-
ing node. An actor is parameterized by its inputsi =
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Figure 2. Abstract node model
(i0; i1; � � � ; in�1) and its outputso = (o0; o1; � � � ; om�1).
The node functionality is given by a strict vector function
f . The semantics of a dataflow node may be described as
follows [6] (see Fig. 2b).

receiving data: The node is waiting for data. If its firing
rule is satisfied, it changes to state 2.

executing node function: The node function is per-
formed exactly once. After the node has finished its op-
eration, it changes to state 3.

sending data: The new tokens are written to the outputs.
As long as not all of them have been communicated to its
successors, it remains in this state. Finally, the node reenters
state 1.

During hardware/software partitioning, a node is
mapped to a computing resource, e.g., CPU, ASIC (see
Fig. 1).

2.1.2 Edge

Edges represent directed communication between two
nodes. The abstract view of an edge will be calledchan-
nel (see Fig. 3).

source sinkn m

I

c: capacity

Figure 3. Abstract channel
A channel is a virtual unidirectional link between the

source and sink node. Our abstract view makes the follow-
ing assumptions:

Only unidirectional dataflow over the channel is al-
lowed. Each channel has exactly one source and one sink
node.

The channel may have alocal memorywith first-in first-
out (FIFO) semantics for storing data. The FIFO may be
initialized with individual data.

In case of SDF graphs, the abstract channel is cha-
racterized by six parameters: number of produced tokens
n of each source node invocation, number of consumed to-
kensm on each sink node invocation, capacity constraintc,
initial tokensI, sourceandsinknode.

2.1.3 Target Architecture

We use a simple architecture model (see e.g., Fig. 4b). The
model consists of three component types:

Computing resources(rectangular boxes): Each node in
the dataflow graph is bound to a computing resource. Com-
puting resources are of typesoftware(microprocessor CPU,
microcontroller MCU, DSP), andhardware(FPGA, ASIC).
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Buses(solid lines): Each data transfer between comput-
ing resources and memories is bound to a bus resource (e.g.,
B1, B2, B3, B4 in Fig. 4b) which may be standard, uni- or
bi-directional, or dedicated buses.

Memories(rounded boxes): Memories are used to store
the channel FIFO data. Note that the binding possibilities of
channel memory, source and sink nodes, and transfers are
tightly dependent on each other (see also [16] for a graph
model of these influences).

2.2 Implementation model

First, the refinement of a channel after the determina-
tion of the bindings is presented. During this refinement, all
required parameters for final code generation of interfaces
are defined. Then, an object oriented modeling of proces-
sors is discussed that eases the code generation for the target
model.

A synthesis tool calledHASIS (hardware software
interfacesynthesis) written in JAVA implements the de-
scribed refinement steps and does the code generation for
necessary interfaces.

2.2.1 Logical refinement of a channel

Our refinement approach is based on the introduction ofreg-
ular nodesandinterface nodes[6]. Regular nodes usesend
andreceiveprimitives to communicate data along channels.
Interface nodes are introduced if device drivers (in case of
software) or hardware interfaces (in case of hardware) are
necessary to be generated. The refinement process is de-
scribed for a channel shown in Fig. 3.

Step 1:If a FIFO is needed (c>0) a new node (regular
node) is inserted into the abstract channel specification (see
Fig. 4a).

Step 2:Depending on the binding of regular nodes, ad-
ditional interface nodes have to be inserted.

Example 4 Fig. 4a) describes a binding of nodes and arcs
of a given specification onto a target architecture (dotted
lines). Now, an interface nodeIHW has to be inserted
that describes the interface to be synthesized for reading
the FIFO data out of memory1 over bus B3 by the sink node
implemented in hardware on the FPGA (see Fig. 4c). De-
pending on the target architecture, typically more than one
interface node may have to be inserted and refined.
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Figure 4. Logical channel refinement
Table 1 explains the parameters of each node. For exam-

ple, source and sink node parameters include the function of

the node but are independent of whether their input (output)
is communicated using a blocking, non-blocking protocol,
etc. The interface nodes (IHW in this case) get information
about the chosen communication style and target communi-
cation module.

regular
nodes

regular
node

interf.
nodes

parameter source
sink

FIFO IHW
(ISW )

function x
binding x x x
token datastructure x x x
c x
n source x x
m sink x x
I x
(non-)blocking x
synch./asynch. x
communication
module (2.2.3)

x

Table 1. Parameters of nodes for interface
synthesis

2.2.2 Object oriented modeling of processors

In our implementation, each component of the target model
(i.e., processor) typically possesses several I/O-signaling fa-
cilities, e.g., via interrupt, DMA, using dedicated I/O ports,
etc. Figure 5 shows parts of a class tree for modelling these
different facilites while exploiting the principles of classifi-
cation, polymorphism, inheritance and composition. There

computing
ressource

Serial

description
abstract

communication
module

Motorola Motorola Motorola National Sem.
Microwire/Plus

COP87L40RJ device

communication
module

device family
dependentNational Sem.

Dedicated Port

Dedicated Port

processor

Serial I/O

Interrupt DMA

DMAInterrupt

MC68340MC68330

communication
module

Figure 5. Object oriented modeling of proces-
sors

exist four class levels:

1. The abstract classes on theabstract descriptionlevel
describe common properties of the computing re-
sources and the communication modules (e.g., each
communication module has a generate(...) method for
code generation of transfer commands).

2. There is onecommunication moduleclass for each I/O-
type (e.g., Interrupt, DMA, etc.) They define the very
specific properties of each I/O block (e.g., which pa-
rameters specify a DMA module?).
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3. The classes on thedevice family dependent commu-
nication modulelayer include the methods for code
generation of I/O-primitives particular to the I/O-unit.
They use parameterized templates which are stored in
a device library.

4. On thedevicelevel, the processors are described as
compositions of their communication modules.

Example 5 The NATIONAL SEMICONDUCTOR
COP87L40RJ microcontroller is a composition of the two
modulesNSC Microwire/Plus c and NSC Dedi-
cated Port .

This object oriented approach has the following major ad-
vantages:

1. Reuse:Each device-family-dependent communication
module can be reused many times in order to model
other processors of the same family.

Example 6 The MOTOROLA processors MC68330 and
MC68340 use the same communication moduleMOTOROLA
Interrupt .

2 Ease of processor modeling:The modeling of a pro-
cessor is very easy by simply instantiating predefined
communication modules.

Example 7 The MOTOROLA processor MC68340 is mod-
eled by a JAVA class, which instantiates the appropriate
device-family-dependent communication modules.

public class MC68340 extends Processor{
MInterrupt mint = new MInterrupt();
MDMA mdma = new MDMA();
MSerial mser = new MSerial();

public boolean create(String CM,...){
if (CM.equals("DMA")==true)

return mdma.create(...);
:

return false;
}

public void generate(...) {
mdma.generate(...);

:
}

}

There are two additional methods:create(): Creates an
internal data structure required for code generation (e.g.,
for selecting and configuring a DMA channel).generate():
Causes the generation of the device drivers.

3 Retargeting and design space exploration:Retargeting
the interface generation is simply done by switching
the processor in the target architecture and rerunning
the code generation. Similarly, changes in the binding
of nodes (e.g., during design space exploration) can be
incorporated automatically.

2.2.3 Code generation

The classSystemSpec (see Fig. 6) contains the specifica-
tion of the dataflow graph, the architecture graph of the tar-
get, the binding of dataflow nodes to computing resources
as well as a feasible schedule for the dataflow graph. The
CodeAssembler manages the process of code synthesis:

1. interface generation: The InterfaceGenerator
selects the appropriate interfaces for each channel
and each participated processor (e.g., DMA chan-
nel: MC68340.create(DMA,...) in Example 7) and
causes each processor instance to generate the inter-
face code by using its communication modules (e.g.,
MC68340.generate(...) in Example 7).

2. top level generation: For each computing resource,
the CodeAssembler invokes a generate method of
the appropriate code generator (CodeGeneratorC ,
CodeGeneratorVHDL ). They assemble the pro-
duced device drivers (C) and interface entities (VHDL)
and generate a main program for processor resources
and a top level VHDL-entity in case of dedicated hard-
ware while considering a given scheduling mode (see
[6] for scheduling).

3. compilation: The produced source code has to be com-
piled with appropriate compilers and synthesis tools.

C
CodeGenerator

CodeGenerator
VHDL

CodeAssembler

Processor Y

X.InterruptY.Interrupt

Processor X

generation of interface nodes

Data
Repository

Generator
Interface

X.DMA

SystemSpec

generation of
regular nodes,

and

manage synthesis tasks

main programs,

top levels

Figure 6. Detailed code generation
In all phases, the initial SystemSpec will be continously re-
fined which is managed by theDataRepository .

3 Case study

As an example, we present the implementation of the
molecular dynamics simulation application in Example 1 on
the target architecture in Fig. 1c). First, the binding of nodes
to computing resources (nodes F and I are bound to CPU,
node P is bound to ASIC). All communications are bound to
B1. Both nodes F and I have their local data stored in mem-
ory1 wereas node P has his local data stored in memory2.
For each channel, different requirements may be specified.
For example, channel A is configured to be a non-buffered
channel of integer datatype with blocking send and blocking
receive semantics.

Example 8 We consider channel B in Fig. 1 for which
a non-bufferd memory mapped I/O implementation with
blocking send and non-blocking receive using a built-in
DMA module of the processor is chosen (see Fig. 7). Via
the DMA data port d, the hardware node can transfer data
to the software node. An additional status port s consists
of one simple data ready bit R used for communication syn-
chronisation. The flowcharts describe the semantics that the
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interfaces implement. The non-blocking receive primitive of
node F has the two local statesstop(initial state) andrun
with different behaviour to consider the DMA module sta-
tus. The communication is done in two steps: (1) By setting
the R bit, the hardware signals a demand for communica-
tion. (2) The data values are transmitted when the DMA
module issues an explicit read access on the data port.

write msg on d

read s

return NotReady

Status port s R

Data port d
015

N

Y

R = 1

R = 0

write msg on d

?

whole
msg sent

N

Y

read DMA status

?

Y

DMA
stopped

N

return NotReady

return DataReady

localState=stop

N

Y

?
R = 1

init + start DMA

localState=run

localState=stop localState=run

blocking send of 
hardware node P

non blocking receive of 
software node F

access d
read

?

Figure 7. Interface refinement for channel B
Figure 8a) shows a code template for the software node

F. a) The node behaviour is given by a C-function. b) Now, a
node function is generated for each software node (e.g., F1
for F) using the communication primitives (e.g., recvB(),...)
to read and send data. The semantics of the communication
primitives depends on the actual channel specification. c)
The complete software program consists of the two func-
tions F1(), I1(), the generated communication primitives
(recvB(),sendD(),recvD(),sendA(),sendC(), recvC()) and a
scheduler. Additionally, there is a main() function in which
the initialization of communication primitives and the ini-
tialization of memories with initial data takes place. Then,
main() calls the scheduler. d) The scheduler is created by
HASIS, too. In the example, static-scheduling [6] has been
chosen (Fig. 8d).

if (recvB(..)==DataReady) {
recvC(..);
F(...);
sendD(...);

}

a) b) void F1() {
/* force computation */

}

c)

interface scheduler

main()

d) void scheduler() {
while(1) {

}
}

F1 I1
F1();
I1();

}

void F( ... ) {

Figure 8. Implementation of the software par-
tition of the molecular dynamics simulation
application
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